

Quelques Algorithmes classiques de Traitement du Signal dans l'Embarqué et architectures dédiées

Philippe Ravier, enseignant-chercheur Laboratoire PRISME – Polytech Orléans Université d'Orléans

Campus Orléans

Sites IUT Bourges

INSA CVL

Site de Chartres

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES CENTRE VAL DE LOIRE

Laboratoire Pluridisciplinaire de Recherche Ingénierie des Systèmes, Mécanique, Énergétique

Recherche et Ingénierie

√ Systèmes intelligents

√ Mécatronique

- √ Fluides
- ✓ Energie
- ✓ Combustion

✓ Propulsion

Sites IUT Indre + HEA

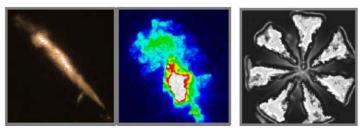
www.univ-orleans.fr/prisme

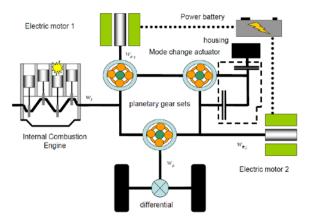
Directeur du Laboratoire : Azeddine Kourta

Responsables Départements :

Nacim Ramdani et Pascal Higelin

- Multisite
- √ 90 enseignants-chercheurs
- √ 80 doctorants

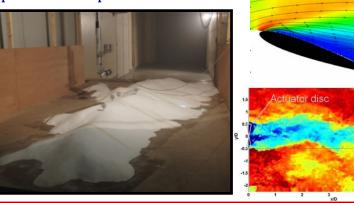



Fluides Energie Combustion Propulsion

Amélioration des performances Réduction nuisances et risques

Energie Combustion Moteurs

Carburants, nouveaux modes de combustion



Contrôle et optimisation de rendement moteur Gestion de l'énergie

Ecoulements et Systèmes Aérodynamiques

Amélioration des performances aérodynamiques

Dispersion des polluants

Combustion et Explosions

Explosions, déflagrations, détonations Risques Incendies. Approches métrologiques

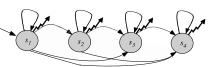


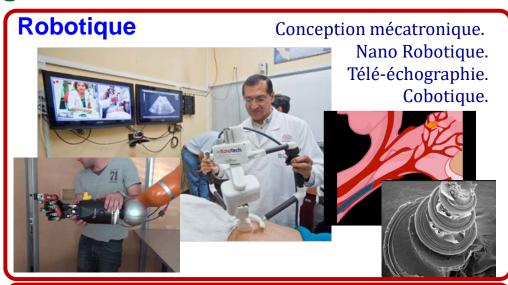
Systèmes Intelligents et Robotique

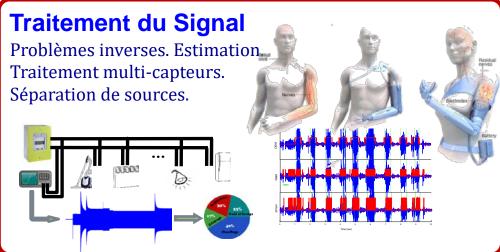
Systèmes de Santé. Médecine Personnalisée. Maintien à Domicile. Gestion de l'Energie. Industrie du Futur.

Image et Vision

Vision Géométrique. Images multimodales. Reconnaissance visuelle. Fusion. Diagnostic.






Automatique

Sureté de fonctionnement. Politique de maintenance. Supervision. Diagnostic. Capteurs logiciels. Commande. Planification.

26/10/2018

Plateformes embarquées - Axe signal

Dispositif Vicon

- Système de mesure permettant de localiser de manière précise et en temps réel plusieurs objets dans un environnement de grande dimension.
- Composé de plusieurs **caméras** optoélectroniques fixes, chacune entourée de LEDs émettant un rayonnement infrarouge.
- Localisation dans la scène des **marqueurs** rétroréfléchissants fixés sur le sujet en mouvement.

Démo Vicon

- Avantages : liberté de mouvement (marqueurs légers et petits), système très précis.
- Inconvénients : réflexion parasites, salle dédiée (sans source lumineuse importante), au moins 2 caméras doivent voir le marqueur.

Plateformes embarquées - Axe signal

Système TEA

- Localisation (centrales inertielles)
- Mesures électrophysiologiques (ECG, EMG, impédancemétrie, respiration)
- Eye tracker ambulatoire (TOBII)
- Paramètres d'ambiance physique (bruit, luminosité, t°, hygrométrie, pCO2)
- Logiciel de capture, synchronisation et post traitement CAPTIV

réhabilitation et analyse de la marche

posture, équilibre et contrôle moteur

Vidéo

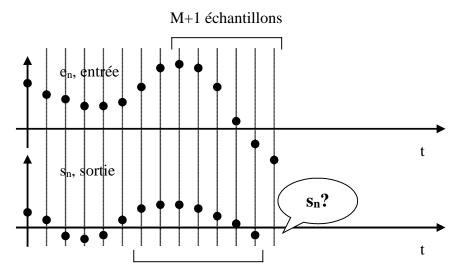
Projet ECOTECH: caractériser les pertes d'équilibre en contexte

écologique de vie : application à la maladie de Parkinson

Démo

Le traitement du signal dans l'embarqué

- ✓ **Problématique d'une application :** il faut tenir compte de l'architecture de l'embarqué / de la complexité algorithmique / des contraintes physiques (temps, énergie, encombrement, radiation...)
- ✓ **Adéquation Algorithme-Architecture** : optimisation d'une architecture dédiée à un algorithme avec optimisation de la spécification de cet algorithme pour améliorer son implantation
- ✓ **Objectif**: minimisation de la ressource matérielle => algorithmes 'simples'
- ✓ Les plus classiques :
 - filtres RIF / RII (à coefficients constants)
 - algorithmes adaptatifs LMS, RLS et Kalman (à coefficients évolutifs)
 - la transformée de Fourier (FFT)



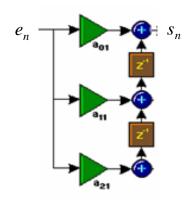
Algorithmes de TS dans l'embarqué : les filtres

$$\sum_{j=0}^{P} a_{j}.s_{n-j} = \sum_{i=0}^{Q} b_{i}.e_{n-i}$$
 équation aux différences

K échantillons

Exemples:

- Correcteur proportionnel : $s_{n-j} = K.e_n$ (non récursif)
- Dérivateur : $s_n = \frac{e_n e_{n-1}}{T_e}$ (non récursif)
- Intégrateur : $s_n = s_{n-1} + T_e$. e_n (récursif)

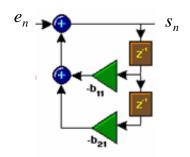


Algorithmes de TS dans l'embarqué : RIF et RII

Les filtres RIF

$$s_n = \sum_{i=0}^{Q} b_i \cdot e_{n-i}$$

Architecture transversale



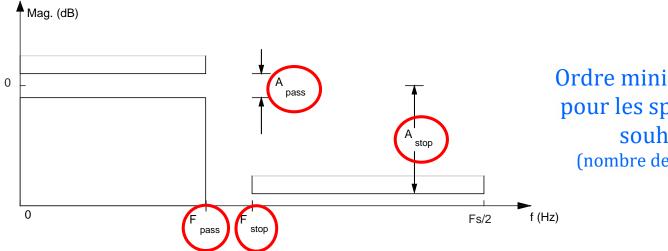
- Avantages : structure stable, phase linéaire
- Inconvénients : nécessiter peut beaucoup de coefficients pour filtrage performant

Les filtres RII

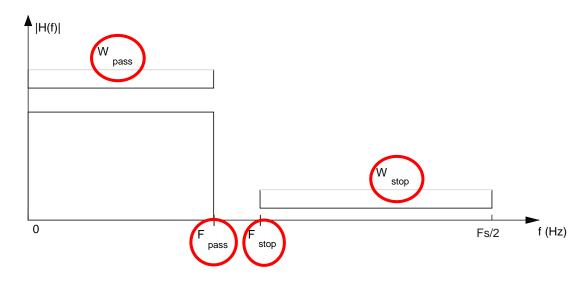
$$s_n = \sum_{i=0}^{Q} b_i \cdot e_{n-i} - \sum_{j=1}^{P} a_j \cdot s_{n-j}$$


Architecture récursive

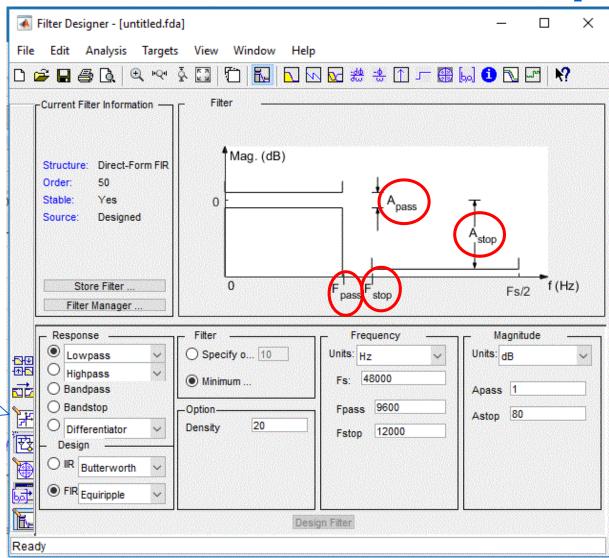
- Avantages : peu de coefficients car « mémoire » infinie
- Inconvénients : peuvent être instables, sensibles au bruit



Filtres RIF et RII : spécifications

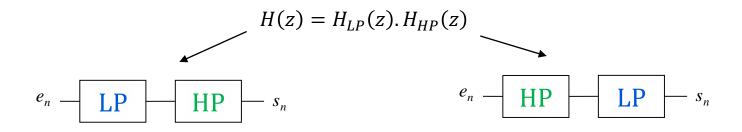


Filtres RIF et RII : spécifications


Ordre minimum trouvé pour les spécifications souhaitées (nombre de coefficients)

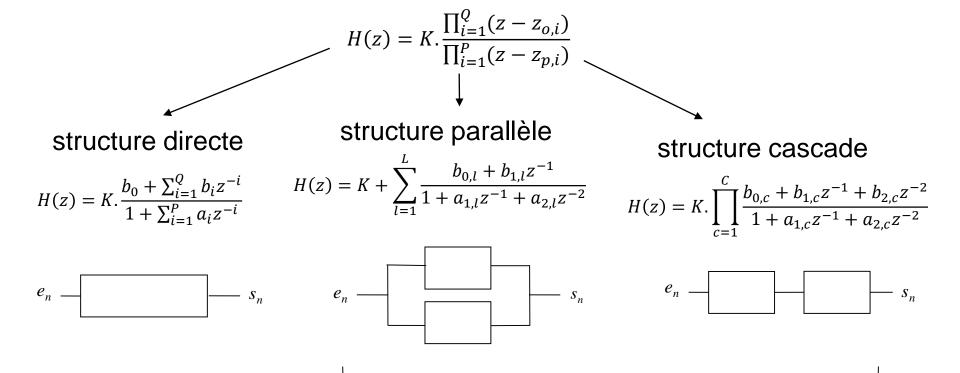
Ordre spécifié avec flexibilité sur les spécifications

Filtres RIF et RII: conception


Possibilité d'évaluer l'impact du codage des coefficients sur le gabarit du filtre

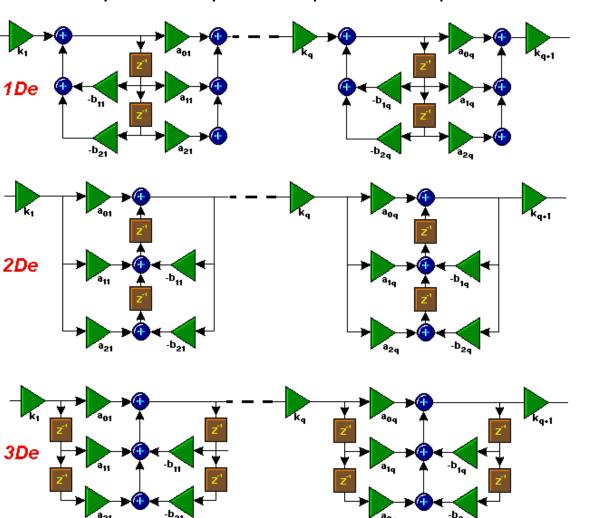
Source : interface Matlab de conception de filtres

Filtres RIF et RII : implémentation


Une même réponse fréquentielle peut être implantée sous différents ordres :

Filtres RIF et RII : implémentation

Une même réponse fréquentielle peut être implantée sous différentes structures :


Structures moins sensibles aux variations des coefficients

Filtres RIF et RII : implémentation

Une même réponse fréquentielle peut être implantée sous différentes topologies :

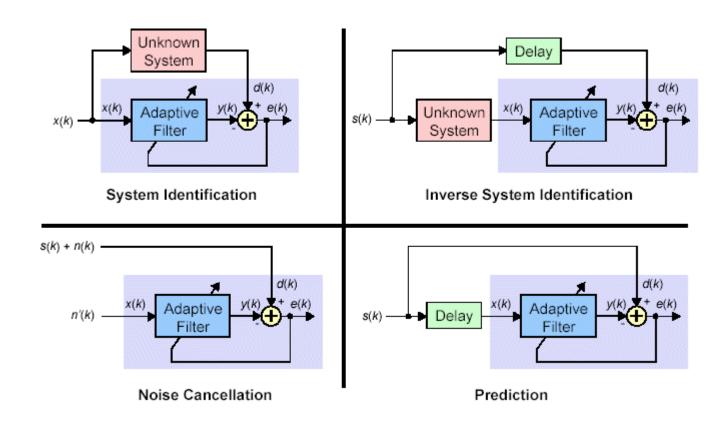
Exemple de la structure cascade

Gestion de la dynamique

Risque de dépassement en sortie + ou x

Dépassement temporaire possible dans une suite de sommations si le résultats final tient dans la dynamique (en complément à 2)

Mise en place de facteurs d'échelle

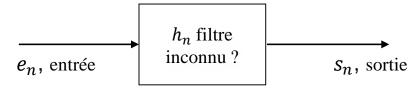

Dynamique gérée

Bruit quantification ajouté

Algorithmes de TS dans l'embarqué : filtres adaptatifs

Architecture de filtres adaptatifs

Objectif : filtrer x(k) de façon à ce que y(k) soit le plus proche possible du signal désiré d(k)



Algorithmes de TS dans l'embarqué : LMS

L'algorithme adaptatif LMS : le gradient stochastique

Hypothèse: filtre RIF
$$s_n = \sum_{j=0}^{Q} h_j . e_{n-j} = \boldsymbol{h}^T \boldsymbol{e}_n$$

<u>Principe</u>: **h** n'est pas connu et on va chercher à le faire évoluer à chaque instant *n* pour que la sortie du filtre soit celle observée

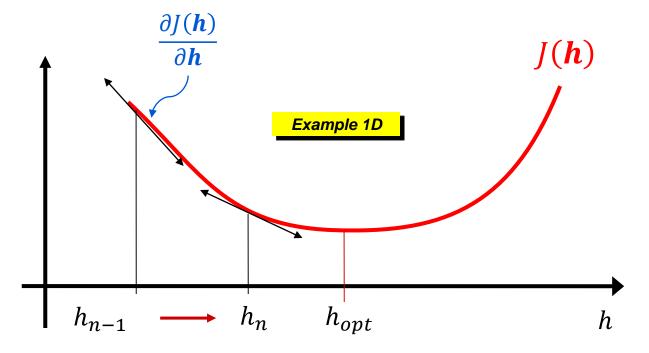
La sortie est donc estimée $\hat{s}_n = \mathbf{h}^T \mathbf{e}_n$ avec une erreur $\varepsilon_n = s_n - \hat{s}_n$

<u>Résolution</u>: on utilise le critère $J(\mathbf{h}) = E\{|\varepsilon_n|^2\}$ à minimiser

Solution bloc

$$\boldsymbol{h}_n = \boldsymbol{R}_n^{-1} E\{\boldsymbol{e}_n s_n\} \text{ avec } \boldsymbol{R}_n = E\{\boldsymbol{e}_n \boldsymbol{e}_n^T\}$$

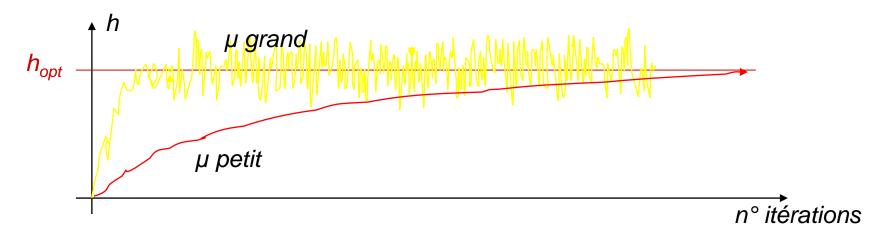
Solution itérative


$$\boldsymbol{h}_n = \boldsymbol{h}_{n-1} - \mu \frac{\partial J(\boldsymbol{h})}{\partial \boldsymbol{h}}$$

Algorithmes de TS dans l'embarqué : LMS

L'algorithme adaptatif LMS : le gradient stochastique

Le critère à minimiser est instantané $J(\mathbf{h}) = |\varepsilon_n|^2$



Solution itérative : $h_n = h_{n-1} + 2\mu e_n \varepsilon_n$ avec $\varepsilon_n = s_n - h_{n-1}^T e_n$

Algorithmes de TS dans l'embarqué : LMS

Choix du pas d'adaptation µ

Convergence

$$0 < \mu < \frac{2}{Q.P_s}$$

avec *Q* le nombre de paramètres et P_s la puissance du signal s

Variantes avec gradients à pas variable, adaptatifs...

Algorithmes de TS dans l'embarqué : RLS

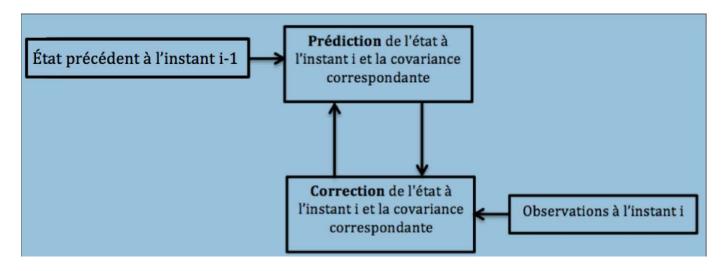
✓ L'algorithme adaptatif RLS : les moindres carrés récursifs

On considère une version adaptative de chaque matrice de la solution bloc

Solution itérative : $h_n = h_{n-1} - 2\mu e_n \varepsilon_n$ devient $h_n = h_{n-1} + G_n e_n \varepsilon_n$

Le gain G_n est mis à jour à chaque itération (fait intervenir e_n et un gain λ)

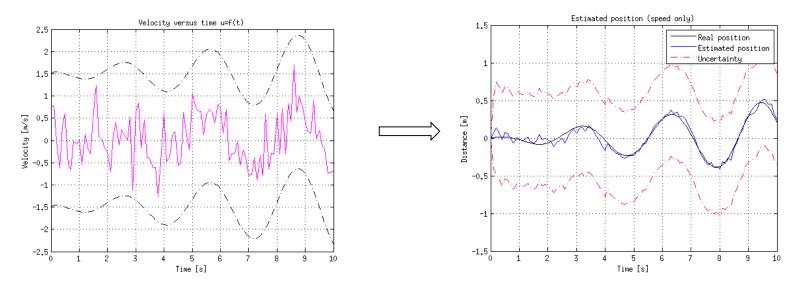
- Avantages : convergence rapide du RLS et meilleure qualité que LMS (annulation du bruit de perturbation)
- Inconvénients : complexité du , coût espace mémoire


Algorithmes de TS dans l'embarqué : Kalman

✓ Le filtre de Kalman :

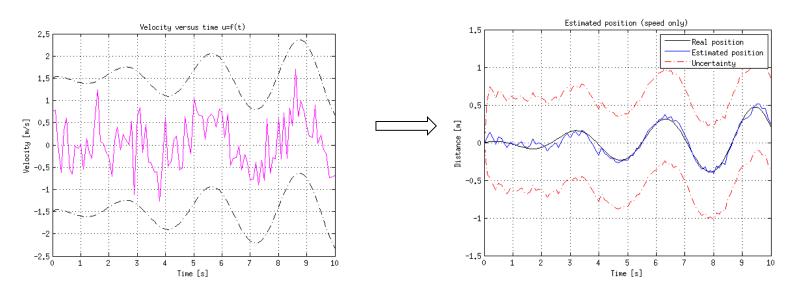
$$X_{k+1} = AX_k + Bu_k + w_k$$
$$Z_k = CX_k + v_k$$

Filtre permettant d'estimer l'état optimal d'un système, en fonction de mesures réelles bruitées


Principe: minimisation de la covariance de l'erreur à posteriori

Algorithmes de TS dans l'embarqué

✓ Prédiction, estimation, filtrage


Source https://www.lucidarme.me/exemple-de-filtre-de-kalman/

✓ Souvent utilisé en couplage de systèmes (fusion par sélection des meilleures données et correction mutuelle) pour améliorer la précision Navigation inertielle / GPS /wifi

Algorithmes de TS dans l'embarqué

Prédiction, estimation, filtrage

Source https://www.lucidarme.me/exemple-de-filtre-de-kalman/

- Avantages: filtre optimal (meilleur filtre linéaire, EQM minimale)
- Inconvénients : formalisation des données avec une équation d'état et une d'observation, optimalité sous conditions (bruits blancs gaussiens indépendants et centrés, linéarité)

Tendances matérielles et cibles actuelles

✓ Rendre les objets communicants et réduire la quantité de traitement embarqué : déport de la complexité vers le concentrateur

✓ Composants spécifiques ASIC intégrant le traitement, pSoc

✓ Evolution langages libres : openCV, python...

Questions?