

Récupération d'énergie mécanique piézoélectrique

Guylaine POULIN-VITTRANT

https://greman.univ-tours.fr/

Le monde de demain a besoin de micro-nanosystèmes ...

2

La recherche au GREMAN - Champs d'application ciblés

Production, stockage & conversion de l'énergie électrique

Electronique nomade & récupération d'énergie

Mesures, contrôles et diagnostics pour l'industrie et la médecine

Le GREMAN - 3 sites géographiques

Tours Sud

UFR Sciences et Techniques

Tours Nord

Site industriel de STMicroelectronics

Blois

INSA Centre Val de Loire IUT de Blois

Les sources d'énergie

- Rayonnée : lumière, infrarouge, radio fréquence
- Cinétique : vibration, mouvement
- Thermique : gradients ou variations de température
 - Capteur Capteur Capteur GPS Capteur activité musculaire

Capteur

cochléaire

Capteur

cérébral

Les sources d'énergie

- Rayonnée : lumière, infrarouge, radio fréquence
- Cinétique : vibration, mouvement
- Thermique : gradients ou variations de température
- •

Récupération d'énergie mécanique par les matériaux piézoélectriques ... au GREMAN

Fabrication

Synthèse de nanostructures ZnO Fabrication de composants à nanostructures ZnO : nanogénérateurs, transistors

Modélisation

Modèles Analytiques ou Eléments Finis de générateurs piézoélectriques:

- Composites à nanofils
- Poutres vibrantes à couche piézocéramique

Caractérisation

Structurale (DRX, MEB, AFM...) Electrique:

- Spectroscopie d'impédance
- Caractérisation I-V Fonctionnelle:
- Banc de test en vibration
- Banc de test en compression

High stress

Low stress

⇒ The type of mechanical excitation will determine the structure, working mode and power level.

Piezoelectric bimorph :

Quartz

PZT ceramics (50's)

PVDF film (1969)

Nanowires (early 2000)

Monocristals (early 2000)

Macro Fibre Composites (early 90's)

Piezocomposites (early 90's)

Material	Quartz	BaTiO ₃	PZT	KNN	MFC	PVDF	PZN- 9PT	AIN	GaN	ZnO
d ₃₃ (10 ⁻¹² m/V)	2,3	90	300 à 700	200	400	30	2500	7	1,9	10
										11

Choice of the best piezoelectric material for a given application: Intrinsic figure of merit?

Far from resonance: FoM = d.g $FoM = \frac{d.g}{\tan \delta}$ $FoM = \frac{d^2}{\epsilon \tan \delta}$

⇒ Importance of piezo coefficients but also dielectric permittivity

$$FoM = \frac{d.g}{s_{33}^E} = \frac{W_{conv}}{W_{meca}} = k_{33}^2 \Rightarrow \text{efficiency}$$

At resonance of a cantilever beam
$$FoM = \frac{k_{31}^2 Q_m}{s_{11}^E}$$

⇒ Behind a FoM, some specific conditions (type of excitation and electrical load)

Quartz

PZT ceramics (50's)

PVDF film (1969)

Monocristals (early 2000)

Macro Fibre Composites (early 90's)

Piezocomposites (early 90's)

d ₃₃ (10 ⁻¹² m/V) 2,3 90 300 à 700 200 400 30 2500 7 1,9 10	Material	Quartz	BaTiO ₃	PZT	KNN	MFC	PVDF	PZN- 9PT	AIN	GaN	ZnO
	d ₃₃ (10 ⁻¹² m/V)	2,3	90	300 à 700	200	400	30	2500	7	1,9	10

Effect of composite structuration

H J Lee et al., Sensors 2014, 14, 14526-14552

Zinc oxide nanostructures : a multi-functional material

Wurtzite type crystal structure of ZnO

Substrate compatibility

Opoku et al. Nanotechnology 26 (2015) 355704

Large family of nanostructures

Wang et al., Materials today 7, 6 (2004) 26–33

- ✓ Single-crystalline highly aligned ZnO NWs
- ✓ Large area NWs arrays on a variety of substrates: silicon, glass and plastic
- ✓ Preferentially c-axis oriented perpendicular to the growth substrate
- ✓ Semiconducting : wide band gap of 3.37 eV at room temperature
- Piezoelectric : higher piezo coefficient than bulk ZnO

Zinc oxide nanostructures : a multi-functional material

Main attractions:

Transverse

Force

□ Higher piezo coefficient compared to bulk ZnO

Matériau	Matériau massif (expérimental)	Echelle nanoscopique (expérimental)			
wateriau	d ₃₃ (10 ⁻¹² m/V)	E (GPa)	d ₃₃ (10 ⁻¹² m/V)	E (GPa)		
ZnO	9.93	164	14-26.7	100		
GaN	1.86	397	12.8	43.9		
PZT	650	N/A	101	46.4-99.3		
PVDF	-25	N/A	-38	0.39		

E. L. Perez, Thèse Univ. Grenoble Alpes, 2016

Main attractions:

- □ Higher piezo coefficient compared to bulk ZnO
- Does not fracture easily [1]

Transverse

Force

- □ Failure of one nanowire (NW) may not compromise operation
- □ Energy generation over a range of frequencies (1Hz to some 100 Hz)
- Biocompatible

Hydrothermal synthesis of ZnO nanowires (NWs):

Reactants:

- Zinc nitrate hexahydrate : $Zn(NO_3)_2 \cdot 6H_2O$
- HMTA (Hexamethylenetetramine) : $(CH_2)_6N_4$
- Ammonia : NH₄OH

Opoku et al., Nanotechnology 26 (2015) 355704 Opoku et al., RSC Adv. 5 (2015) 69925-69931 Boubenia et al., Scientific Reports (2017)

Major advantages:

✓ Low temperature (85-100 °C)

✓ Compatible with industrial processes
 Major limitations:

✓ Defects ⇒ decrease of output voltage

All must be performed at temp <100°C

ZnO NWs

All must be performed at temp <100°C

iniversité

Wish list

All must be performed at temp <100°C

Wish list

Manufacturing process : video available on https://youtu.be/n9-4dSQrveU

Dedicated test bench for piezogenerators

- Compressive force in contact or impact mode up to 13N, 10Hz
- Voltage measured via a high input impedance double buffer circuit
- Variable resistive load up to 130 $\text{M}\Omega$

Durability test

Power vs load resistance

- High pressure sensitivity of ~0.1 V/kPa
- @ 3 N, 7 Hz, 1 cm²:
 Peak power : 0.6 μW

Average power : $0.1 \,\mu\text{W}$

université de **TOURS**

Large area device on bank cards

Front side

AV 684 154 370 ABHISHEN SINGH DAHIYA

Direct connection with LCD

Drive electronic devices such as Liquid Crystal Display

Acknowledgments

Kevin Nadaud

Camille Justeau

Taoufik Tlemcani

INSA UNITARY AND A CONTRACT OF A CONTRACT OF

Damien Valente

Former members

Abhishek Dahiya

François Morini

Chandra Chandraiahgari

Sarah Boubenia

Nicolas Camara

Charles

Opoku

http://www.nanofil-flexible.fr/

Christopher Oshman Kiron P. • Rajeev

Acknowledgments

"ZnO nanowires" project was supported by:

- The collaborative technological platform CERTEM 2020
- Région Centre funding "MEPS" (Module à Energie Perpétuelle sur Substrat flexible)
- National funding ANR "FLEXIBLE" (ANR-14-CE08-0010-01)

http://www.nanofil-flexible.fr/

ECSEL JU "EnSO" project under grant agreement N° 692482

http://www.enso-ecsel.eu/

"Piezoelectric devices for energy harvesting" project was supported by:

- ANR LabCOM "Lab-TMEMS" (Transducteurs et Microconvertisseurs Electromécaniques pour applications MédicaleS)
- Région Centre funding "DIPIR" (Dispositif piézoélectrique sans plomb de récupération d'énergie)

ERTeM

intre-Val de Loi

References

T. Hoang, G. Poulin-Vittrant, G. Ferin, F. Levassort, C. Bantignies, A. Nguyen-Dinh, M. Bavencoffe, **Parametric study of a thin piezoelectric cantilever for energy harvesting applications**, Advances in Applied Ceramics, 117 (2017) 231-236 https://doi.org/10.1080/17436753.2017.1403538

K. Nadaud, G. Poulin-Vittrant, D. Alquier, **Effect of the excitation waveform on the average power and peak power delivered by a piezoelectric generator**, Mechanical Systems and Signal Processing 133 (2019) 106278 https://doi.org/10.1016/j.ymssp.2019.106278

G. Poulin-Vittrant, A. S.Dahiya, S. Boubenia, K. Nadaud, F. Morini, C. Justeau, D. Alquier, **Challenges of low-temperature** synthesized ZnO nanostructures and their integration into nano-systems, Materials Science in Semiconductor Processing 91 (2019) 404-408 <u>https://doi.org/10.1016/j.mssp.2018.12.013</u>

A. S. Dahiya, F. Morini, S. Boubenia, K. Nadaud, D. Alquier, G. Poulin-Vittrant, **Organic/Inorganic hybrid stretchable piezoelectric nanogenerators for self-powered wearable electronics**, Advanced Materials Technologies (2017) 1700249 <u>https://doi.org/10.1002/admt.201700249</u>

A. S. Dahiya , C. Opoku, G. Poulin-Vittrant, N. Camara, C. Daumont, E. G. Barbagiovanni, G. Franzò, S. Mirabella, D. Alquier, **Flexible organic/inorganic hybrid field-effect transistors with high performance and operational stability**, ACS Appl. Mater. Interfaces 9 (1) (2017) 573–584 http://dx.doi.org/10.1021/acsami.6b13472

A.S. Dahiya, C. Opoku, R.A. Sporea, B. Sarvankumar, G. Poulin-Vittrant, F. Cayrel, N. Camara, D. Alquier, **Single-crystalling ZnO sheet source-gated transistors**, Scientific Reports 6 (2016) 19232 <u>https://doi.org/10.1038/srep19232</u>